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SUMMARY

A review is made of ionospheric data reported since the IGY

from rocket and satellite-borne ionospheric experiments. These

include rocket results on electron density (RF impedance probe),

D-region conductivity (Gerdien condenser), and electron tem-

perature (Langmuir probe). Also included are data in the 1000

kilometer region on ion concentration (ion current monitor)and

electron temperature from the Explorer VHI Satellite (1960 4).

The review includes suggestions for second generation experi-

ments and combinations thereof particularly suited for small

sounding rockets.
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IONOSPHERIC RESULTS WITH SOUNDING ROCKETS

AND THE EXPLORER VIII SATELLITE (1960_I)*

by

R. E. Bourdeau

Goddard Space Flight Center

INTRODUCTION

Since their advent as tools for conducting research in the earth's environment, the

importance of rockets in many scientific disciplines has become increasingly apparent.

With reference to ionospheric studies, the CW propagation experiments of Jackson and

Seddon (Reference 1) have yielded electron density profiles with much better altitude

resolution than was previously obtainable from ground-based ionosondes. The resulting

improvement in the interpretation of ionosonde data (Reference 2) is particularly impor-

tant in view of the world-wide use of such data for monitoring ionospheric conditions.

Through the combining of electron density data with absorption data on the E° and Ex

modes, electron collision frequencies in the D-region were also derived from the above

CW propagation experiments. Kane's analysis (References 3, 4) of the data from one of

these experiments has led to the best collision frequency model of the D-region. Impor-

tant, too, has been the work of Johnson, Meadows, and Townsend (Reference 5) whose

measurements of both neutral and ionic composition with rocket-borne spectrometers

have contributed to a better understanding of dissociative processes in particular and the

chemistry of the ionosphere in general.

The impetus of the International Geophysical Year (IGY) has brought about many new

experiments, some of which measure the same parameters as those just mentioned, and

some of which directly measure other quantities important to a complete description of

ionospheric processes. Predominant among the latter are RF impedance probes for

measuring electron density, ion current monitors for total ion concentration, Langmuir

probes for electron temperature, and Gerdien condensers for D-region conductivity. It

is possible to combine these new devices on small sounding rockets with either the

*Presented at the Second International Space Science Symposium, Florence, Italy, April 3, 1961.



pre-IGY ionospheric experiments or those developed in other disciplines, to obtain a

more thorough explanation of the many remaining ionospheric problems.

For example, combining the RF impedance probe with a CW propagation experiment

can provide useful information concerning ionospheric irregularities (Reference 6).

Combining an electron temperature probe with a measarement of the kinetic gas tem-

perature can resolve the question of thermodynamic e.tuilibrium. In this respect a valid

direct measurement of electron temperature would en:_ance the value of ground-based

radar back-scattering techniques, which hold the promise of continuous monitoring of

this same parameter. Combining solar flux measurements in pertinent parts of the

spectrum with a measurement of total ion density and with one of the percentage content

of the individual ion species should place confidence i,_ the continuity equations. Specifi-

cally regarding the problems of the D-region, measur _ments of charged particle concen-

trations by techniques particularly adaptable to very small rockets, combined with equally

miniaturized techniques for measuring differential absorption, should lead to improved

collision-frequency models -- including their diurnal and latitude effects. There is also

the need to combine a measurement of the increase in ionization in the D-region during

solar flares with a measurement of hard and soft radiation fluxes. Equally important is

a simultaneous measurement of ionospheric and mete(,rological parameters.

The present discussion will review ionospheric data from rocket-borne experiments

designed to measure electron density, collision frequency, D-region ionization, and elec-

tron temperature. Also presented are data from the Explorer VIII Satellite (1960 _),

which contained experiments that directly sampled the immediate environment of the

spacecraft. It will be shown how planned refinements based on both the rocket and sat-

ellite results can lead to some important ionospheric studies.

I

¢.C

ROCKET MEASUREMENTS OF ELECTRON DENSITY

The theory of the Seddon CW propagation experirr ent has been treated elsewhere

(Reference 1). This remains the most unambiguous rr ethod for obtaining the absolute

value of electron density as a function of altitude, pro:ided that two requirements are

satisfied: (1) the rocket's transverse-to-radial veloc:ty ratio is small, and (2) the

ionosphere is unchanging with time (Reference 7). The experiment is most useful, then,

on an ascending near-vertical trajectory into an undisturbed ionosphere; however, some

important results have been obtained for such ionospheric abnormalities as sporadic E

(Reference 8) and auroral ionization (Reference 9). A recent theoretical analysis shows

that if full use is made of all the recorded quantities, corrections can be made for the

time variations of the ionosphere.



Ofthealternativemethodsof measuringelectrondensityfrom rockets,the most
promisingis theRF impedanceprobe. TheprobedevelopedbyJacksonandKane(Refer-
ence10)consistsof a shorteneddipoleantenna;theelectrondensityis computedfrom a
comparisonof theprobe'sin-flight capacitancewith its free-spacevalue. As with any
techniquewhichmakesmeasurementssensitiveonlyto the vehicle'simmediateenviron-
ment,the accuracyof this methoddependsonanevaluationof the local disturbancedue
to thepresenceof thevehicle. This particular typeof disturbancedoesnotsignificantly
affectpropagationexperiments.

Themostaccuratemeasurementsof electrondensityin theUnitedStatesby the
probemethodhavebeenobtainedbyJacksonandKane(Reference11),whoseresults are
shownherein Figure 1. It is apparentthatthe electrondensitiesobtainedfrom the
simultaneousCWpropagationexperimentagreequitewell with the ionosondedata. The
RFprobedata,however,yield electrondensitiesabout50percentlower.

A recentappraisal(Reference6) of thecorrectionrequiredfor theRF probedata
supportsapreliminary conclusionthat thedifferencecanbeexplainedonthebasisof an
ion sheathformingabouttheprobe. Tworefinementsproposedfor futureflights should
reducethis calibrationfactor evenfurther: (1)a variablebias appliedto theprobe,thus
collapsingthe ion sheath(Reference11);and(2)Whale'ssuggestionof a "guardring" that
wouldessentiallyremovethelargest sheathuncertainty(wheretheprobeadjoinsthe
rocketbody).

BoththeCWpropagationandtheRF probeexperimentare enhancedin valueif in-
cludedonthe samevehicle. This is illustratedby Figure2, in whichtheelectrondensi-
ties for the samerocket flight are replottedas afunctionof time from launch. Onthe
ascentportion, theCW propagation experiment provided information on altitude dependency

of the correction factor for the RF probe results. At the zenith, the RF probe continued

to obtain results where the CW propagation data had large excursions due to the rocket's

transverse velocity, by then an appreciable factor. Also, significantly, a comparison of

the difference between the two curves on the descent with the difference on the ascent

permits the inference (Reference 6) that an ionospheric irregularity existed between the

descent and the launch positions. An appropriately timed rocket flight wherein experi-

ments responsive to gross effects are conducted simultaneously with localized measure-

ments would probably narrow down the altitude regions and the time-constants of sudden

ionospheric disturbances.

It should be emphasized that in obtaining the RF probe results presented in Figures

1 and 2, care was taken to minimize other errors which the rocket carrier can introduce.

Errors due to outgassing were minimized by sealing the propellant tanks after rocket

burnout. In rocket flights conducted recently, appreciable errors attributed to outgassing

were reported by Pfister and Ulwick (Reference 12).
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ROCKET MEASUREMENTS IN THE D-REGION

Most studies of the D-region of the ionosphere have been made by either ground-based

or rocket-borne propagation experiments. However, the large effects of collision and

absorption processes that are characteristic of this altitude region complicate experiments

based on radio propagation alone. A knowledge of the ratios of positive and negative ions

to electrons is needed for a better understanding of electron production, diffusion and

recombination processes. Similarly, more data are needed on the altitude dependency of

electron density and collision frequency in order to improve the interpretation of ground-

based observations of radio absorption. Recently reported results give cause for con-

fidence that a rocket payload can be developed which, by simultaneous measurement of

conductivity, of ion and electron densities, and of collision frequencies, would improve

D-region models greatly.



Previously reported results (Reference 13) on the i _nic conductivity in the D-region

are reproduced in Figure 3. This conductivity is proportional to the product of ionic

density and mobility. The experimental rocket results were obtained by use of a Gerdien

condenser adapted from those used on aircraft and balloons by workers in atmospheric

electricity. The two solid lines are analytic prediction_ based on the assumption of

cosmic rays as the sole ionization source. Below 30 ki]ometers the analytic curve is

computed from the tropospheric value for an ionic mole.'ular weight of 110 AMU; above

30 kilometers it is based on a value of 32 AMU.

Several important conclusions were drawn from these data. First, the agreement of

the rocket results with an altitude extrapolation of the balloon results and with the theo-

retical curve at altitudes up to 50 kilometers lends validity to the experimental method.

Second, the experimental data are in support of cosmic rays as the principal source of

D-region ionization under normal ionospheric conditions. Future flights during solar

flares should shed light on the relative importance of hard and soft ionization sources

during disturbed conditions. Finally, the decrease of conductivity in the altitude region

corresponding to the temperature inversion region (60-1¢0 kilometers) has been attributed

by Whipple (Reference 14) to the presence of particulat_ matter. His computations of the

amount and size of meteoric dust needed to account for this decrease agree with Ludlam's

estimate (Reference 15) based on observations of noctilucent clouds.

The decrease in conductivity from that theoretically expected in the 60-80 kilometer

region was recently confirmed and similarly interpreted by Smith (Reference 16) in a
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recent Nike-Cajun rocket flight wherein the positive ion current flow to an isolated por-

tion of the rocket skin was monitored. Smith's results (Figure 4) agree in the absolute

values of measured conductivity at altitudes up to 60 kilometers. As his results show,

there is the same general trend, though less pronounced, toward decreased ionization

starting at 60 kilometers. These conductivity data are indices of the shape of the elec-

tron density profile in the D-region. Kane's electron density model (Reference 4) does

show a slight decrease near the 60 kilometer region, although the valley is not as steep

as would be expected from the conductivity data. It should be emphasized that the three

sets of data were taken at separate latitudes and at different times. Despite the known

variability of the D-region, however, the similarity of the trend at the temperature inver-

sion level suggests a meteorological dependency, the likeliest explanation being Whipple's

hypothesis of diffusion to particulate matter.

O

90

A

80
u,

O
1

v 70

LU

a
:)
In
1

,_ 60

50

I

NIKE-CAJUN 10.25

WALLOPS IS.,VA.

8 DECEMBER 1960

1152 EST

ASCENT ---- X--_

DESCENT --

I I

101 10 2 10 3

POSITIVE ION CONDUCTIVITY (ESU}

Figure 4 - Recent rocket measurement of ionic conductivity

Ion densities can be computed from the conductivity by assuming an ionic mobility

or by a modification to the Gerdien condenser experiment. Despite the non-simultaneity

of the data, computations based on conductivity (References 14, 16) generally suggest a

preponderance of ions over electrons in the D-region. They indicate a ratio of 30 at 55

kilometers down to 1 at 80 kilometers, in accordance with Mitra's prediction.
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With reference to future work, a D-region payload :ms been suggested which would

add conductivity apparatus to the simultaneous measurement of electron density (RF

probe) and differential absorption. Kane's latest appro_ch -- transmitting from the ground

to the receiver -- should be an improved method for the differential absorption measure-

ment, from the standpoint both of miniaturization and of circumventing antenna breakdown

complications in the critical pressure region. Such a r,mket flight would be even more

valuable if simultaneous observations could be obtained from an extremely high-powered

low-frequency ionosonde.

MEASUREMENTS OF ELECTRON TEMPERATURE

One of the most difficult parameters to measure di:'ectly from a rocket or satellite

is the ionospheric electron temperature. Since the IGY there has been an accelerated

effort in the United States toward rocket application of I,angmuir probes for this measure-

ment. In this author's opinion, further evaluation and r( finement of the general experimen-

tal method are needed before complete confidence can b _ placed in the past or the future

results, particularly those obtained from rockets. How,_ver, the exploratory experiments

have shown that many of the complications previously b, dieved to be limitations can either

be neglected or circumvented. Thus the Langmuir probe does show promise of soon be-

coming a valuable electron temperature gauge, and has tlready become a powerful tool

for measuring total thermal ionization.

The Langmuir probe experiment depends upon mea:;uring, by first a retarding and

then an accelerating process, currents due to electrons with only thermal energies; thus

the list of rocket disturbances that obstruct studies of tlte properties of electrons in their

ambient condition is a long one. Including those disturbmces which now can be neglected

under appropriate experimental conditions, the list is a:; follows:

1. the effects of RF fields used for telemetry transmissions;

2. outgassing contamination from the rocket c_xrier;

3. magnetic field effects;

4. the overall retarding effect due to the negat ve potential which the main

body assumes relative to the plasma;

5. aerodynamic phenomena;

6. the presence of negative ions;

7. the ratio of the mean free path to the thickness of the rocket's ion sheath;

8. the presence of positive ions;

9. photoelectron emission (due to solar radiation) from both the probe and the

rocket surfaces.



Twotypesof probeshavebeenflownonrocketsbytheUnitedStates:Serbu(Refer-
ence17)andSmith(Reference16)haveconductedseparaterocket flights of anasym-
metric probein whicha smallplanarconductoris oneelectrodeandthemainrocket
bodyis the other;the othertypeis a symmetricbipolar probeejectedfrom therocket
carrier (Reference18). Thetechniquesare similar in thatthetemperaturemeasure-
mentis derived from the electron current to an electrode as its potential is varied.

From compaz'isons of data taken during RF silence with those taken during RF trans-

missions on the same rocket flight of an asymmetric probe, it can be seen that -- for the

telemetry frequency and power used (Reference 16) -- the RF field effect can be neglected.

The agreement between ascent and descent data from an asymmetric probe (Reference 17)

indicates that with proper hmldling the errors due to outgassing are small. The ejectable

bipolar probe should be free of this effect. As will be shown in the next section, the mag-

netic field effect can be neglected if care is taken to obtain a volt-ampere curve for a

minimum change in rocket orientation.

t'--

There is still the question of whether the overall retarding influence of a negative

rocket could be such that tile measured temperatures are those of non-Maxwellian elec-

trons in the higher energy part of the spectrum. All recent rocket flights in tile United

States, including those of RF ion spectrometers, have consistently shown rocket poten-

tials between -1 and -2 volts relative to the plasma. The existence of the retarding effect

favors the use of an asymmetric probe, since at least the area immediately surrounding

the electrode is brought to the plasma potential. Neither of the two electrodes of a bipolar

probe are permitted to approach plasma potential. Yet the bipolar and asymmetric probe

data should agree if the energy distribution is Maxwellian.

There are three effects which could be influential at altitudes below 115 kilometers.

First, if the mean free path is small compared to the rocket diameter, there can be prob-

lems associated with viscous flow. Such an effect, if it exists, favors the use of the

bipolar probe. Secondly, the g'eneral Langmuir theory assumes the absence of negative

ions, which might be present in significant numbers in this altitude region. Finally, the

mean free path must be larger than the thickness of the rocket's ion sheath. All three of

these effects, which admittedly might be small, demand a more complete analysis than

has been made to date.

Photoemission can be serious unless care is taken in evaluating its contribution to

the volt-ampere curve. This is avoided in the asymmetric probe by taking data only

when the probe is shaded by the main rocket body. The bipolar probe, however, always

has some portion of its electrodes in sunlight. There is also the question of evaluating

the contribution of positive ion current to the volt-ampere curve. In rocket flightsto

date this has been accounted for by assuming a behavior characteristic of the positive

ion current as a function of probe potential. If,for example, the positive ion current is

treated as a constant function, high electron temperatures are computed (Reference 19).
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On the Explorer VIII satellite, both photoemission and po,_itive ion effects were actually

removed by appropriate biasing. The use of this second-_eneration device on small

rockets would permit greater confidence to be placed in both past and future results.

Experimentally obtained electron temperatures are compared in Figure 5 with

Jastrow's kinetic gas temperature model. The rocket data are presented as a spread of

results at specific altitude increments. They include two flights of an asymmetric probe,

one by Serbu and one by Smith, and one flight of a bipolar probe. Also plotted are recent

data at 1000 kilometers obtained from the second-generation electron temperature probe

flown on the Explorer VIII satellite (Reference 20). It should be emphasized that the large

spread in the rocket data could be due to the fact that they were obtained under ionospheric

conditions, at different times, and at different latitudes.

Kallman (Reference 21) has recently presented a model of neutral scale height and

temperature, based on rocket and satellite results, which indicates a diurnal variation.
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Her daytime value of temperature in the isothermal region (1800°K) is in exact agree-

ment with the Explorer VIII electron temperature data, also taken in daytime conditions.

With regard to the region below 250 kilometers, according to Kallman there is a kinetic

gas temperature inversion in the F1 region with a maximum at 180 kilometers and a

minimum at about 210 kilometers. A similar pattern appears to occur in the rocket

electron temperature data although shifted to lower altitudes. It should be re-emphasized,

however, that the rocket results are not yet significant enough, statistically, to permit a

firm conclusion.

Again regarding the lower altitude regions, the rocket electron temperatures are

higher in absolute magnitude than most kinetic gas models, although high values of

kinetic gas temperatures have been observed experimentally. Even when those of Horowitz

and LaGow (Reference 22) plotted in Figure 5, which assume a constant molecular weight

of 29, are corrected for molecular weight distribution, temperatures somewhat higher

than Jastrow's will result. Because of the exploratory nature of the rocket experiments

and the scarcity of electron temperatures, it is not intended here to make a case for or

against thermodynamic equilibrium. Several things must be done before this important

question can be resolved.

First, according to current concepts the electron temperature should not exceed the

neutral gas temperature, because of the effectiveness with which excess photo-electron

energy is transferred to neutral particles. But it is not absolutely certain that all energy

transfer mechanisms -- one of which could make a case for higher electron temperatures--

have been explored theoretically in sufficient detail. Second, there is a need for simul-

taneous kinetic gas and electron temperature measurements, preferably along with radar

back-scattering data after the latter process has undergone further development. Finally,

the factors which could introduce errors into the rocket use of Langmuir probes should

be evaluated critically. The most significant of these factors are those listed as being

effective below 115 kilometers. Important also are possible errors due to positive ion

and photoemission currents. These can be eliminated in future flights by a device simi-

lar to that used on the Explorer VIII satellite.

THE IONOSPHERE DIRECT MEASUREMENTS SATELLITE

The Explorer VIII satellite was launched from Cape Canaveral on November 3, 1960,

into an orbit with a 50 degree inclination to the equator. An active life of two months was

planned for this satellite. Of its ten experiments, four are pertinent to this discussion.

They were designed to measure the density and temperature of the thermal electrons and

the density and mass of the thermal ions, by techniques which depended on sampling the

spacecraft's immediate environment.
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A photographof the satellite, indicatingthepertinentfeatures,is presentedin Fig-
ure 6. Thealuminumshell, consistingof twotruncatedc,_nesjoinedat theequatorby a
shortcylinder, is 30inchesin diameterat the equatoran,I 30 incheshigh. Bothcones
havenon-conductivethermal coatingsin patternsconduciJeto themaintenanceof an
equipotentialsurface. Retractedinsidethesatellite is a _hortened-dipole,eachhalf of
whichis tenfeet long,whichwasextendedafter injectionintoorbit. It actedasanRF
impedanceprobefor measuringelectrondensity. These,:ondexperimentis the ion cur-
rent monitorwhichmeasuredpositiveion concentration.Shownontheupperconeis the
electrontemperatureprobementionedearlier. Alsonotrisible is thefourth experiment
discussedhere,a retardingpotentialexperimentwhoses,_nsoris locatedontheequator

ELECTRON CURRENT MONITOR

TOTAL CURRENT MONITOR

C_ ELECTROtlTEMPERATUREPROBE

ASPECT SffNSOR

Figure 6 - The ionosphere direct measurementssatellite, Explorer VIII
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diametrically opposite the ion current monitor. The total current monitor merely as-

sisted in the data interpretation by measuring the net current to the satellite skin at its

location. All data reported here will be for a daytime condition at an altitude of 1000

kilometer s.

The electron temperature probe, shown schematically in Figure 7, consists of a grid

flush with and insulated from the satellite skin. Behind the grid is a collector biased

positively so that the electron current is measured free of positive ion and photoemission

current effects. This is a significant advantage over the previously described rocket

models. It is especially important for satellite use where, because of the low electron

densities, both the positive ion and the photoemission effect can predominate at certain

orientations.

O
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\
///////////

20-

I0
O

>

u 0>

-5
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0.2 0.4

TIME (Seconds)

COLLECTOR

i÷

15V --

//////////,

TO TELEMETER

Figure 7 - Electron temperature probe employed in the Explorer VIII satellite

In alternate halves of the sensor's duty cycle a variable voltage (whose waveform is

indicated in Figure 7) was applied to the grid, permitting a measurement of both the

electron temperature and the satellite's potential relative to the medium at the sensor

location. The satellite's spin rate was 21.4 rpm at this time; thus the volt-ampere curve

was taken for a change in orientation of only 25 degrees. A typical result showing actual

experimental data is presented in Figure 8. It differs from the classical Langmuir probe
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curve only in that the bothersome positive ion and photo,_mission currents are removed.

Two distinct slopes where the grid is below and above t_e plasma potential are clearly

apparent. When the grid potential is negative, the slope of the curve is a measure of the

electron temperature. The potential of the grid relative to the plasma is generally taken

as the negative value of either the point where the curve departs from this slope or the

point of intersection of the two slopes. For the curve sLown, an electron temperature of

1800 ° :_ 300°K and a satellite potential between 0 and -0.15 volts are obtained. The

±300 °K error is quoted in the temperature firstly becau,, e of the limited resolution

necessitated by the telemetry bandwidth, and secondly tc account for possible change in

the grid's electrical transparency with applied voltage.

It is important now to re-evaluate the factors listed in the previous section as af-

fecting the validity of the measurement. Care was taken to limit the radiated telemetry

power to a value ( I00 mw) well below that which was shc wn by the rocket results to have
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no effect on the measurement. Outgassing contamination may be deemed negligible be-

cause of the long time in orbit. With regard to magnetic field effects, volt-ampere

curves were taken for one complete satellite spin and consistency was observed in the

computed temperature. At other locations on the satellite a measurable magnetic field

dependency was observed; but the freedom of the total collector current from positive ion

and photoemission currents would have permitted a correction for this dependency had

the probe been located there. Returning to the list of factors influencing the measure-

ment, the retarding effect of the body's negative potential greatly favors this particular

satellite measurement, since the spacecraft was near the plasma potential. It should be

re-emphasized that this affects the rocket measurements only if the energy distribution

is not Maxwellian, in which case the rocket-borne bipolar probes should tend to indicate

higher temperatures than the asymmetric probes. The three factors listed earlier for

consideration only below 115 kilometers are not pertinent here. Finally, the biasing

technique serves to remove the last two factors listed, the positive ion and photoemission

currents.

The ion current monitor, shown schematically in Figure 9, consists of three parallel

electrodes. The outermost grid is flush with and electrically connected to the satellite

skin. The inner grid is negatively biased to suppress photoemission from the collector

and to remove incoming electron current from the measured collector current. Figure 10

shows experimental data compared with a theoretically predicted curve (Reference 23) as

SATELLITE SKIN

l- COLLECTOR

15V _ I I
4-

// / / / /

i.I.

TO TELEMETER

Figure 9 - Ion current monitor employed in the Explorer VIII satellite
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a function of the angle 0 that the sensor makes with th_ velocity vector; the agreement

is good. At angles less than 45 degrees, the positive ioa concentration N+ can be com-

puted simply from

i+ = _+ AN+ eV cos _ , (1)

where i+ is the measured current, _+ the combined electrical transparency of the two

grids, h the collector area, V the satellite velocity, an_ e the electronic charge. All

the coefficients are known. The transparency coefficieilt was calibrated in flight by com-

paring the currents plotted in Figure 10 with the net current to a plate insulated from and

flush with the satellite skin.

The more complete theoretical equation shown at tile bottom of Figure 10 takes into

account all values of satellite-to-ion velocity ratios or, alternatively, all angles of the

sensor relative to the velocity vector. To get good agreement at the satellite's sides re-

quires one of three assumptions: an extremely high ior temperature in a medium con-

taining only O+; a reasonable ion temperature in a medLum containing some H+; or leakage

of the electric field between the medium and the spacecraft into the latter's ion sheath.
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The measured ion concentration as computed from Figure 10 is 1.3 × 104/cm 3, a

value consistent with the electron concentrations obtained from the RF impedance probe.

Ionosonde data taken at the same time and geographical position yield an electron density

of 7 x 10S/cm 3 at an altitude of about 300 kilometers. The positive ion concentration

measured from the satellite agrees with this value, on the assumption of an ionospheric

model with a neutral gas scale height of 60 kilometers, diffusive equilibrium, and a pre-

dominant O + constituent.

The sensor of the retarding potential experiment (Figure 11) is mechanically identi-

cal to the ion current monitor and differs from it electrically only in that the collector

potential was varied in accordance with the waveform shown on the figure. The shape of

the volt-ampere curve obtained at this altitude is close to that predicted by Whipple and

presented at the COSPAR symposium of 1960 (Reference 19); it is according to curve C

of Figure 11. Curve D is a plot of experimental data from Sputnik III (1958 $) obtained

SPUTNIK III TRAP EXPLORER VIII TRAP

f "%\

// \\

_\ -_--. ./"1 I
\\ _ 111

Z

r

Figure 1! - Comparison of spherical with planar
retarding potential experiment
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through the use of the spherical trap shown to the left of the figure. The difference in

resolution is attributed to the advantages of planar over spherical geometry.

For a single ionic constituent, since the satellite's _elocity is large compared to the

ionic thermal velocity, the ionic mass m can be computed from

1 v_ (2)%e : _m

where CR is the potential measured at the point midway aetween zero and the maximum

ion current. In doing this it is necessary to take into ac,:ount the shift of the overall

curve produced by the biasing effect of the satellite-to-plasma potential. The amount of

this shift was measured by the electron temperature probe. The experimental data taken

at 1000 kilometers indicate a mean ionic mass of about 16 AMU.

The total current monitor together with the devices described above made it possible

to develop the model (Reference 20) of the plasma sheatl surrounding the satellite. This

model is shown in Figures 12 and 13; Figure 12 assume,, no magnetic field. The lack of

a positive ion current in the satellite wake (Figure I0) ic nds credence to the existence of

@

_Direction of

Motion

\

(I.)s_

/

R e _ IO_/cm3

H :: 0

(Ip),

e -

.15V

Figure 12 - Qualitative satellite sheath mvdel postulated
from experimental data
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an electron sheath immediately adjoining the "back" surface of the satellite. If this

sheath is assumed to have the form of a cone, its size may be estimated from the

satellite-to-ion velocity ratio and the satellite diameter. In this case the cone has a

half-angle of about 25 degrees and extends back a distance of about one satellite radius.

The slightlynegative satellitepotential (0 to -0.15 volts) measured by the electron

temperature probe is evidence for the existence of a positive ion sheath enveloping both

the satelliteand the electron wake. The thickness of this sheath would be comparable to

one Debye length,which is computed as 2.5 centimeters. The remainder of the model

describes the current exchange between the satelliteand the medium. A positive ion

current flows from the medium at angles from -90 to +90 degrees relative to the velocity

vector, peaking in the direction of the motion. The electron current from medium to sat-

elliteis modulated to a lesser extent in accordance with the velocity vector.

Finally, there is a photoemission current

which is effective at angles of i60 degrees

relative to the sun, with a maximum density

of 5 × 10 -9 amp/cm 2. This value can be

compared with the random electron current

density to predict the altitude at which the

satellite can be expected to go significantly

positive. For most ionospheric models this

will occur at about 4000 kilometers, just

above the apogee of the Explorer VIII orbit.

The effect of the magnetic field is intro-

duced in Figure 13. Here, as predicted by

Beard and Johnson (Reference 24), the motion

of a satellite with velocity V through the

magnetic field produces an induced potential

difference over the satellite surface given by

* - ¢0+ (3)

where ¢0 is the potential with no magnetic

field and d' the vector distance of any point

on the surface from the satellite center. The

maximum electron current would be expected

where ¢ is most positive, near the point cor-

responding to the direction _ × _. This pre-

diction is consistent with the observations.

At the equator, it was observed that the elec-

tron current peaked when the total current

'_ ¢o PLANE

, I /'

!

!
/

Vx

(

Figure 13- Orientation of Explorer VIII sat-
ellite with respect to magnetic and velocity
vectors
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monitor pointed in the 7× _ direction as the satellite span. The modulation of the cur-

rent due to magnetic field was higher at the satellite's eciuator than in the upper cone, as

would be expected since the change in distance from the g0 plane is greater. It is esti-

mated that potential difference of 0.14 volts existed acro _s the equator, and 0.04 volts at

the top cone. As was expected, all points in the directio_ of 7×g were more positive

than ¢o and all other points correspondingly more negat ve. The good agreement of the

models expressed by Figures 12 and 13 with kinetic theo_'y lends confidence to the ion-

ospheric data presented herein.
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