

NASA CR-159,329

NASA Contractor Report 159329

NASA-CR-159329

COMPUTATION OF SPANWISE DISTRIBUTION OF CIRCULATION AND LIFT COEFFICIENT FOR FLAPPED WINGS OF ARBITRARY PLANFORM

Kenneth Razak

KENNETH RAZAK 1305 E. Waterman Wichita, Kansas 67211

LIBRARY CONY

SEP 1 0 1980

LANGLEY RESEARCE CR LIBRARY, NALLA HAMPTON, VIRGINIA

NASA Contract NAS1-15249 August 1980

Langley Research Center

Hampton, Virginia 23665

4<u>37/1</u>/ 19963

INTRODUCTION

Wing tip vortices have long been discussed as a primary factor in determining the distribution pattern and swath widths of materials ejected from agricultural aircraft. Some analytic work has been conducted to determine the effect of span loading on distribution pattern, starting with Wilmer Reed in 1954. (NACA TR #1196, 1953). Thousands of distribution patterns have been measured by researchers and many attempts have been made to modify the pattern of wing tip vortices but none of this work has provided a basis for altering either agricultural airplane design or agricultural airplane operations.

A quantitative assessment of the effect of span loading, both in magnitude and pattern, suitable for use in the field or by aircraft designers or modifiers appears to be necessary to permit decisions to be made with regard to airplane geometric characteristics or airplane flight operations. The advent of programmable calculators and microprocessor computers makes it possible to perform calculations which, up to this time, have been either difficult or impossible because of complexity and length. Accordingly the procedure for calculating span wise load distribution as described in NACA Technical Report 1071 has been programmed on a programmable calculator, the Hewlett Packard HP-97, as well as in BASIC Lanugage. The HP-97 and microprocessors which use BASIC Language are readily available and these programs will make it possible for either an airplane designer or airplane operator to study the effects of span loading on either design or operation.

The procedure of computing a span loading as given in NACA Technical Report 1071 has been reduced to a series of tables and charts so that the user need only to insert the geometric characteristics of his wings, together with the operating specifications of his airplane, and a span loading for his particular wing can be developed. The use of these programs, in conjunction with ASAE Paper #AA 79-001 will enable operators and designers to explore design and operating parameters to determine whether changes or modifications are possible that would materially or economically effect the swath width and distribution pattern.

N86-31353#

i

SYMBOLS

G

Э

spanwise loading coefficient per radian of

	flap deflection $\frac{G}{\delta}$
М	Mach number
m	arbitrary number of span stations
q	free-stream dynamic pressure, pounds per square foot
S	wing area, square feet
V	free-stream velocity, feet per second
W	airplane weight, lb
W/S	Wing loading, lb/ft ²
W	induced velocity, normal to the lifting surface positive for downwash, feet per second
x	longitudinal coordinate measured from the lateral plane through the quarter chord of the wing-root chord, feet
У	lateral coordinate measured from the wing-root perpendicular to the plane of symmetry, feet
α	wing angle of attack, radians

radians

section angle of attack at span station v,

compressibility parameter $\sqrt{1 - M^2}$ circulation, feet squared per second angle of deflection of flap. radians dimensionless lateral coordinate $\frac{y}{b/2}$ dimensionless flap span on one wing panel, measured perpendicular to the plane of symmetry, from the wing root outboard for inboard flaps, and from the wing tip

inboard flaps, and from the wing tip inboard for outboard flaps $\frac{\text{flap span}}{b/2}$ air density slugs/ft³ ratio of section lift-curve slope at span

station ν to $\frac{2\pi}{\beta}$, both at the same Mach number

sweep angle of the wing quarter-chord line, positive for sweepback, degrees

4

с_г lift-effectiveness parameter

η

α_ν.

dα

dδ

β

Г

δ

η_f

ρ

k_v

۸ß

λ

SYMBOLS

SUBSCRIPTS

fpertaining to flapstwing tip,rwing rootavaverage or mean1denoting full wing-chord flaps $\frac{c_f}{c} = 1$ vpertaining to spanwise station

CONVERSION FACTORS

1

1	meter (M)	=	3.281 feet
1	sq. meter (M ²)	=	10.76 sq. feet
1	meter/sec.(M/sec.)	=	3.281 ft./sec.
1	meters/sec. ² (M/sec ²)	=	3.281 ft./sec.
1	Kilogram (Kg)	=	2.205 pounds
1	Kg/M ³	=	.2048 slugs/ft. ³
1	Newton/M ²	=	2.089×10^{-2} lb./ft. ²

ς

COMPUTATION PROCEDURE

No attempt will be made to summarize the theory or analysis which is the base for computing a span load distribution as per NACA Technical Report No. 1071. Rather, a step-by-step procedure will be tabulated, which procedure has been programmed for machine calculation.

A. The first step is to determine a span loading

coefficient, $G = \frac{c_1 \cdot c}{2b}$. This is a dimensionless

factor which is specified per radian angle of attack (or flap deflection angle of one radian). This coefficient

is also written as $\frac{G}{\delta_1} = \frac{\Gamma}{2b}$, from which it can be

seen that:

$$\frac{1}{2b}^{c} = \frac{\Gamma}{bV}$$
or $\Gamma = \frac{1}{2}^{c}$

The value of G/δ_1 varies with span and is a function

of wing aspect ratio, taper ratio, sweep and flap span. It can be computed from the simultaneous equations (4) of Technical Report No. 1071 but it has already been computed and plotted in Figure 4 of T.R. 1071 for a range of aspect ratios, sweep, taper ratios, and flap span. Two of these curves, Figures 4(c) and 4(d), for sweep angles of 0°, have been used to read values of G/δ_1 for aspect

ratios of 6, 8, and 10; taper ratios of .667 and 1.0; and flap spans of .195b, .556b, and 1.0b. These graphs appear as Figure 1 and Figure 2 of this report. G/δ_1 values were

also read for outboard flap spans of .444b and .805b which are the complements of .195 and .556. These values are tabulated in Table I through Table V. The first step in the computational procedure is therefore to read from Table I through Table V the appropriate values of G/δ_1 for the selected wing and flap span at each of the span stations.

<u>B.</u> The wing specifications of span, taper ratio, wing area, and section lift curve slope must be defined.

<u>C.</u> The wing or airplane operating conditions of wing loading, air density and speed, in proper units, must be stated.

D. Agricultural aircraft all operate at maximum airspeed less than 300 ft./ sec. No correction for Mach Number is therefore required.

<u>E.</u> The wing chord at the spanwise stations corresponding to values of G/δ_1 must be computed. For a given taper ratio , λ , the expressions for root and tip chord are:

 $c_{r} = \frac{2 \cdot S}{b (1+\lambda)}$ $c_{r} = \lambda \cdot c_{r}$

£

The wing chord at any spanwise station, $\frac{y}{b/2}$, is:

$$c_{y} = c_{r} \left\{ 1 - \left[\frac{y}{b/2} (1-\lambda) \right] \right\}$$

<u>F.</u> Since $G/\delta_1 = \frac{c_1 \cdot c}{2b}$,

$$c_1 \cdot c = 2b (G/\delta_1)$$

c . c is computed and the wing lift coefficient at station y is : $c_{1y} = \frac{c_1 \cdot c}{c_y}$

<u>G.</u> If a wing operating lift coefficient is chosen, the flight speed is:

$$v = \sqrt{\frac{w/s}{(\rho/2) v^2}}$$

$$C_{L} = \frac{W/S}{(\rho/2) V^2}$$

H. The circulation, Γ , at each span station is:

$$\Gamma_{y} = \frac{c_{1_{y}} (\rho/2) s_{y} \cdot v^{2}}{\rho v} = \frac{c_{1_{y}} \cdot s_{y} \cdot v}{2}$$

$$\Gamma_{y} = \frac{c_{1_{y}} \cdot c_{y} \cdot \Delta_{y} \cdot v}{2}$$

A plot of $\boldsymbol{\Gamma}_y$ as a function of span will enable

 $\Delta\Gamma/\Delta y$ to be secured. In order to compare this value of shed vorticity with another wing, both values of must be computed at the same wing C.

<u>I.</u> The wing lift coefficient for $\alpha = 1$ radian is computed as follows:

$$C_{L_1} = \frac{\sum \left({}^{c}_{1y} \cdot {}^{c}_{y} \cdot \Delta y \right)}{s}$$

The wing lift coefficient at any angle of attack is:

$$C_{L} = \frac{C_{L_{1}}}{57.3} \cdot \alpha$$

The section lift coefficient at any spanwise station for a given operating lift coefficient, C is: Lop

$$\frac{dC_{L}}{d\alpha} = \frac{C_{L_{1}}}{57.3}$$

<u>K.</u> The local lift coefficient, c_y , at any span station ,y, is given by:

$$c_{1y} = \frac{c_{L} \cdot c_{1y}}{c_{L_{1}}}$$

H.P. 97 Program.

The Hewlett-Packard H.P. 97 programmable calculator is a small desk size unit which is programmed in its own machine language. 224 program steps are available with 26 storage registers. Programs are stored on small magnetic cards.

The Span loading analysis program is listed on pages 28 and 29. Data entry instructions and program operating instructions are given in appendix A.

The program is run in two segments using the computation forms shown on pages 26 and 27 .

The first segment of the program computes the local wing chord at station y, ranging from root to tip, at span stations as identified from the appropriate Table I through V. The wing characteristics are summarized on the first computation page, following which G/δ_1 and y/b/2 values are listed in the first two columns. The value of Δy is the length of each span segment, entered in feet. Successive computations are performed to secure the chord length at the midpoint of each span segment. The output of the computer is illustrated on page 30. The computed values of C_y are entered in column 5.

The second segment of the program uses computational chart II with the entries as shown on page 31. The first run is an initializing run followed by sequence computation of circulation at each span station. A sample computer listing with indentifier code is shown on page 30.

BASIC PROGRAM

The span loading analysis procedure has been programmed in BASIC language for a Rockwell AIM-65 microprocessor. This program should be adaptable to any of the currently available microprocessors although it should be carefully studied to see whether the syntax of this program is compatible with the microprocessor in question.

The parameters which describe the particular wing being studies, such as gross weight, wing area, lift coefficient (corresponding to the desired swath speed), air density, taper ratio, aspect ratio, flap span, and so forth, are entered manually into the program as per the program statements. If the value of X in statement 16 is input as zero the program computes the swath speed and lists this speed. Alternatively a value of 1.0 for X in statement 16 will cause the program to compute a flight lift coefficient based upon an input speed. In other words, a choice can be made of either selecting an operating lift coefficient and the speed will be computed and printed out or the swath speed can be input and the operating lift coefficient will be computed and printed out.

A twenty column listing gives sequential values of lift coefficient and circulation as a function of span position. Final output is the lift coefficient per radian for either angle of attack or flap deflection together with the lift curve slope of the particular wing. Additional wing geometries can be explored without changing airplane parameters by entering the wing geometry parameters in data statements 170, 171, 172, and 173. The numbers in these data statements are concurrent values of the span station and G/δ_1 factor. For the program as illustrated in Appendix B the first two numbers in statement 170 are actual illustrations of the G/δ_1 factor of .379 at a span station of .05. The numbers as actually illustrated in the listed program correspond to values for a wing with full span flaps, aspect ratio 8 and a taper ratio of .667. These values were taken from Table III. In summary, data statements 170 thru 173 are the tabular values of the span loading factor as read from table I-V.

The output of the BASIC program is a function of the printer being used with the microprocessor. A twenty column output listing is illustrated on page 34 (Appendix B).

Two versions of the BASIC span loading program were prepared. These are designated with file names of SPNLA and SPNLB respectively. They differ only in the manner in which variables are entered into the computer. In SPNLA the airplane and operating parameters are written as program statements 17 through 24. This version of the program is useful when a large number of wings are to be compared for the same airplane parameters.

In SPNLB the airplane and operating parameters are entered as input statements 17 through 24. With this version of the BASIC program every variable must be entered each time the program is run but SPNLB gives more flexibility in parameter variation.

The output listing of both SPNLA and SPNLB are the same except for listing of input data. A sample output listing is shown on page 36.

WING ANALYSIS

A large number of wings, with parameters as tabulated in Tables VI, VII, and VIII, pages 21 thru 23, have been analyzed. Span loading curves for these wings have been prepared and are presented in Figures 3&4. These curves, or the listing from computer programs, can be used to compare span loadings for various wings at various operating conditions.

CONCLUDING REMARKS

Two programs, one for a programmable calculator and one written in BASIC for a microprocessor have been prepared to compute span loading analysis for wings of varying parameters. The span loading as computed by the procedures in this report can be used, in conjunction with reference 4 to evaluate the effect of span loading and its distribution upon the trajectory of particles discharged from any point along the wing span. By using the shed vorticity, as determined by the method as described in this report in conjunction with the dynamics of the discharge particles, a prediction of distribution pattern is possible.

REFERENCES

- Akesson, Norman B.: Dispersion of Materials Released in the Wake of an Aircraft. ASAE Paper 77-1043, 1977.
- Bragg, Michael B.: The Trajectory of a Liquid Droplet Injected into the wake of an Aircraft in Ground Effect. University of Illinois Technical Report AEE 77-7, May 1977.
- DeYoung, John: Theoretical Symmetric Span Loading Due to Flap Deflection for Wings of Arbitrary Plan Form at Subsonic Speeds. NACA TR 1071, 1952.
- Holmes, Bruce; Morris, Dava; and Razak, Kenneth: Data and Analysis Procedures for Improved Aerial Applications Mission Performance. ASAE Paper AA 79-001, Dec., 1979.
- Razak, Kenneth: An Operations Analysis and Distributor Wing Experiment. Agricultural Aviation. International Agricultural Aviation Center, Cranfield, England, November 4, 1962, Volume 4, Number 4, pp. 118-130.
- Reed, Wilmer H., III.: An Analytical Study of the Effect of Airplane Wake on the Lateral Dispersion of Aerial Sprays. NACA Report Number 1196, 1953.

This page is blank.

.

This page is blank.

-

ð

Table I Values of span loading factor G/δ_1 from reference 3 for wings with inboard flaps, $\eta_f = .195 b/2$

· · · · · · · · · · · · · · · · · · ·			
STATION, % ^b /2	ASPECT RATIO=6	ASPECT RATIO=8	ASPECT RATIO=10
.05	.26	. 235	.21
.15	. 225	.20	.175
.25	.14	.115	.09
• 35 [·]	.085	.068	.05
. 45	.06	.045	.03
. 55 .	. 035	. 027	.02
. 65	. 02	.017	.015
.75	.016	.015	.015
.825	.013	.014	.015
.875	.010	.01	.01
. 925	.01	.008	.007
.975	.01	.007	. 005

TAPER RATIO=.667

T

TAPER RATIO=1.0

	· · · · · · · · · · · · · · · · · · ·		
.05	. 245	.215	.185
.15	.210	.185	.16
. 25	.125	.102	.08
.35	. 08	.065	.05
. 45	. 05	.04	.03
. 55	. 03	.025	.02
.65	.02	.017	.015
.75	.015	.015	.015
.825	.010	.012	.015
.875	. 008	.009	.01
.925	. 008	.008	.007
.975	.008	.007	.005

Table II Values of span loading factor G/δ_1 from reference 3 for wings with inboard flaps, $n_f = .556 b/2$

	TAPER RAI	10=.007	
STATION	ASPECT RATIO=6	ASPECT RATIO=8	ASPECT RATIO =10
.05	.40	.343	.285
.15	. 395	.340	.285
.25	. 385	.332	.280
.35	.355	.302	.25
.45	.30	.255	.21
.55	.235	.192	.15
.65	.14	.113	.085
.75	.085	.065	.045
.825	.055	.042	.03
.875	.045	.035	. 025
.925	.040	.030	.02
. 975	.025	.022	.02
1.0	0		·
	TAPER RA	TIO=1.0	
. 05	. 375	.312	.25
.15	.37	.315	. 26
	.36	. 307	. 255
.35	.33	. 28	.23
.45	.29	. 245	.20
<u></u>	.235	.192	.15
.65	.13	.107	. 085
.75	.06	. 052	.045
.825	.03	.03	.03
.875	.025	.025	.025
.925	.025	.022	.02
	.025	.022	.02

TADED DATTO = 667

Table III Values of span loading factor G/δ₁ from reference 3 for wings with full span flaps η_f=1.0 b/2

TAPER RATIO=0.667			
	ASPECT RATIO=6	ASPECT RATIO=8	ASPECT RATIO=10
.05	。445	. 379	.313
	. 442	. 375	. 307
. 25	.433	. 365	. 296
. 35	. 419	.353	.286
	.40	.337	.274
. 55	. 378	. 319	.259
.65	. 347	. 293	.238
.75	.31	,263	.216
.825	. 265	. 229	.192
.875	. 225	.198	.170
. 925	,186	.161	.135
.975	.107	. 09	.073

TAPER RATIO=1.0

	1	1	
.05	.41	.345	.28
.15	.41	.345	.28
. 25	.408	.343	.278
.35	.403 .	.338	.273
. 45	. 395	.33	.265
. 55	. 388	. 322	. 255
.65	. 360	.303	. 245
.75	. 315	. 273	.23
.825	. 275	.24	.205
.875	. 240	.21	.18
.925	. 20	.173	.145
.975	.12	.10	.08
and the second se			

Table IV Values of span loading factor G/δ_1 from reference 3 for wings with outboard flaps, $\eta_f = 0.805 b/2$

:

TAPER RATIO=0.667			
	ASPECT RATIO=6	ASPECT RATIO=8	ASPECT RATIO =10
.05	.185	.144	.103
.15	.217	.175	.132
.25	.293	.25	. 206
.35	.334	.285	.236
. 45	. 34	.292	.244
. 55	. 343	. 292	. 239
.65	. 327	.276	.223
.75	.294	. 248	.201
. 825 ·	.252	.215	.177
.875	.215	.188	.16
.925	.176	.153	.128
.975	.097	. 083	.068

TAPER RATIO=1.0

1

·····			
.05	.165	.13	.095
<u>.15</u>	.20	.16	.12
.25	.283	.24	.20
. 35	.323	.273	.223
.45	. 345	.29	.235
. 55	.358	.296	.235
.65	. 340	.285	.23
. 75	.30	.258	.215
.825	.265	.228	.19
.875	.232	.201	.17
.925	.192	.165	.138
.975	.112	. 094	.075

Table V Values of span loading factor, G/δ_1 from reference 3 for wings with outboard flaps, $n_f=0.444$ b/2

TAPER RATIO=0.667			
	ASPECT RATIO=6	ASPECT RATIO=8	ASPECT RATIO=10
.05	.047	.039	.03
.15	.046	.035	. 024
.25	.051	.035	. 02
.35	.071	.053	.036
.45	.099	.084	.068
.55	.152	.134	.116
. 65	.204	.177	.151
.75	.220	.193	.166
.825	.203	.184	.165
.875	.178	.163	.148
.925	.149	.137	.125
.975	. 09	.076	.063

TAPER RATIO=1.0

		A	
.05	.035	.031	. 028
.15	.038	.03	. 023
. 25	. 05	.036	. 023
.35	.073	. 055	.038
. 45	.103	. 084	.065
.55	.16	.136	.113
. 65	. 218	.188	.158
.75	. 225	.203	.18
.825	. 213	.196	.178
.875	. 193	.176	.158
.925	.163	.144	.125
.975	.103	. 087	.07
	I		

TABLE VI

CHARACTERISTICS OF WINGS ANALYZED

	•	•					·
WING	$\frac{W/S}{(1b/Ft^2)}$	ASPECT RATIO	TAPER RATIO	FLAP SPAN ⁿ f	WING AREA (Ft ²)	, WING SPAN (Ft)	WEIGHT (1bs)
N1	25	6.04	1.0	None	326.6	44.417	8160
N2	25	8.0	1.0	None	326.6	51.116	8160
N3 ·	25	10	1.0	None	326.6	57.149	8160
• N4	25	6	.667	None	240	44'	6000
N5	25	8	.667	None	240	44'	6000
N6	25	10	.667	None	240	44'	6000
N7	25	6	.5	None	326.6	44,4'	8160
N8	25	8	.5	None	326.6	51,116'	8160
N9	25	10	.5	None	326.6	57.149'	8160
N10	25	8	1.0	None	450	60	11250
	25	7.5	.667	None	450	58,095	11250
N12	. 25	8	.667	None	450	60	11250
N13	25	8	1.0	* Inb=556	326.6	51.116	8160
N14	15	8	1.0	Inb=556	326.6	51.116	8160
N15	25	8	.667	Inb=556	326.6	51.116	8160
N16	15	8	.667	Inb=556	326.6	51.116	8160
N17	25	8	.5	Inb=556	326.6	51.116	8160

* inboard of station η_{f}

12

TABLE VII

CHARACTERISTICS OF WINGS ANALYZED

WING	W/S (1b/ft ²)	ASPECT RATIO	TAPER RATIO	FLAP SPAN ⁿ f	WING AREA (ft2)	· · WING SPAN (ft)	WEIGHT (1bs)
N18	15	8	.5	Inb=.556	326.6	51.116	5000
N19	25	8	. 667	Inb=.556	450	60	11250
N20	25	10	.667	None	450	67.082	11250
N21	25	8	.667	None	326.6	51,116	8160
N22	25	8	1.0	Inb=,195	326.6	51.116	8160
N23	25	8	. 667	Inb=,195	326.6	51,116	8160
N2/	25	8	1 0	Tnb=, 195	450	60	11250
N25	25	8	667	Tnb = 195	450	60	11250
N26	25	6	667	None	326 6	44 417	8160
N27	25	10	667	Nono	326.6	57 140	8160
N27	25	10	.007	None		51 062	11250
N28	25	0	.00/	None	<u>450</u>	51 110	8160
N29	25	8	1.0	* 0.B.0.444	320.0		8160
<u>N30</u>	25	8	1.0	0.B.0.805	326.6	51,116	0160
N31	25	8	0.667	0.B.0.444	326.6	51,116	8160
N32	25	8	0.667	0.B.0.805	326.6	51,116	8160
N33	25	8	1.0	0.B.0.444	450	60	11250
N34	25	8	1.0	0.B.0.805	450	60	11250

t

\$

* outboard of station ${}^{n}f$

1

TABLE VIII

CHARACTERISTICS OF WINGS ANALYZED

. . .

WING	W/S (1b/ft ²)	ASPECT RATIO	TAPER RATIO	FLAP SPAN ^N f	WING AREA (ft ²)	· WING SPAN (ft)	WEIGHT
N35	25	8	0.667	0.B.0.444	450	60	11250
N36	25	8	0.667	0.B.0.805	450 ·	60	11250
N37	30	8	.667	None	327	51.116	9810
N38	35	8	667	None	327	51.116	11445
N39	40	8	.667	None	327	51.116	13080
N40	30	8	.667	Inb= 556	327	51.116	9810
N41	35	8	.667	Inb=.556	327	51.116	11445
N42	40	8	.667	Inb=.556	327	51.116	13080
N43	30	6	.667	None	327	44.3'	9810
N44	35	6	.667	None	327	44.3'	11445
N45	40	6.	.667	None	327	44.3'	13080
N46	30	6	667	Inb=.556	327	44.3'	9810
N47	35	6	.667	Inb=.556	327	44.3'	11445
N48	40	6	.667	Inb=.556	327	44.3'	13080
·							

١

23

,

User Instructions

7

*****'

APPENDIX A Hewelett Packard 97-7, SPAN LOADING ANALYSIS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
I	Enter Data	Reg		
	G/S1	0		
	Span Station , % ^b / ₂	1.		
	Δ_v , % ^b /2, decimal	2		
	P ≑ S			
	Wing Span, b	0		
	Wing Area, S	1		[
	Taper Ratio, λ	2		
•	Gross Weight W	3		
	Air Density, p	4		
	Airplane Ct	5		
		6		
	· · · · · · · · · · · · · · · · · · ·	7		
	<u> </u>	, 		
	Airplana Speed Et./geo input for	8		
	Constant C			
	$\underline{Constant}$	9		
	Press A for first run	· · · · · · · · · · · · · · · · · · ·		
<u>LTT</u>	Enter data for 2nd run, yn			
	<u> </u>	0		
	yn	<u> </u>		
	Δÿ	2		
	Press B			
IV	Repeat Step III. On last step			
	store 1 in Register I, Press B			
	Program prints out C _L as last item.			
V	STO first value of <i>Ay</i> in	1		
	Δy/b/2	2		
	P ≠ S			
	<u> </u>			
	P ≠ S ²	8		
Vi	Press C. Using same entries			
	press D.			
VII	Repeat VI for as many steps as nec-			
	essary. Last step should be y=1.0			
	$\& c_1 \ge c_y = 0$, last print-out will			
	be shed vorticity at tip of wing			
	· · · · · · · · · · · · · · · · · · ·			
	24			

User Instructions

5

APPENDIX A (continued) Hewelett Packard 97-7, SPAN LOADING ANALYSIS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
-	DATA STORAGE			
REG				
1	G/81 (From Tables I-V)			
2	У/ b/2	%		
3	Δγ	FT.		
4				
5	· · · · · · · · · · · · · · · · · · ·	·		
6				
7				· · · · · · · · · · · · · · · · · · ·
8	· · · · · · · · · · · · · · · · · · ·			
9	· · · · · · · · · · · · · · · · · · ·			
10	· · · · · · · · · · · · · · · · · · ·			
A				
В				
C				
D				
Е				
I	· · · · · · · · · · · · · · · · · · ·			
10	Wing Span, Ft.	FT.		
11	Wing Area, Ft. ²	FT. ²		
12	Taper Ratio, Ct/Cr , λ			
13	Weight, # 1b	<u>1</u> b		
14	Air Density-Slugs/Cu Et			
15	Wing C _T			
16	Cr	FT.		
17	Ct	FT		
18	C ₁ _X C			
19	V	FT./SEC.		
	using W/S, ρ & C.			
	<u> </u>			
		·		
	,			·

Hewlett Packard H. P. 97

APPENDIX A (continued)

SPAN LOADING ANALYSIS

Date_____ Sheet_____

I. Wing, Airplane and Operating Data

Identif	ication _						Register
Wing Sp	an		ft.			m	(CET) CCT
Wing Ar	ea		sq.ft		sq.	m	
Taper R	atio			<u></u>			
Operation	ng Weight			ft	kg/n	3	
Wing C.	SILY			(for C,	=constant)	
Swath 5	peed		mph		Kphr		
Root Ch	ord		<u>ft</u>	·	U	1 1	
Aspect	Ratio		± C			-	
Flap:						_	
Typ	e			nan		7	
$dC_{\tau}/d\alpha$	<u> </u>		$\frac{1}{100}$, 1		,Up to	، δ_= ⁼	=
• ما							······
	· · ·	INPU	JT DATA, R	UNS A &	В		
G/	у У	/b/2	ΔΥ	Start	C _v		
Reg	.0 R	eg.1	Reg.2	Program	J.		
				A			
				B			н 1
				B			
				B			
				B			
			- <u>.</u> -	B		-	
				B			
				B			
				B	a		
				B			
				B			
			<u></u>	B			
				B			
				B			
				B			
				B			
				B			
				B		•	
				B			
				B			

PRINT REGISTERS 26

SPAN LOADING ANALYSIS, PART II

Ċ,

ŝ

APPENDIX A (continued)

HEWLETT PACKARD H.P. 97

WING IDENTIFICATION

5

SHEET

INPUT DATA, RUNS C & D

. Ŋ PRESS c_{ly} x c_y y/_{b/2} ∆у $\Delta \Gamma$ REG. 1 REG. 8 REG. 2 P=≥S С P**≂**≥S . . D SAME ENTRIES P≂≥S D P=≥S P≂≥S D P=≥S P≂≥S P≂≃S D P≂≥S P≂≥S D ۰. • -P≓≍S P≂≃S D D P=≥S P≂≥S P≓≥S D P≂≥S P≓≥S P≂≃S D P≓≐S P≓≥S D P=≥S P≂≥S D P≂≥S D P≂≥S P**⇒**≥S P≂≥S D P=≥S P≂≥S D P≂≥S P≂≥S D P≂≥S P≂≥S D

APPENDIX A (Continued) PROGRAM LISTING Span Loading Analysis

H.P. 97-7

Step	Key					Step	Key
001	LBLA					055	0
002	DSP3					056	STOI
003	SPC					057	LBLB
004	SPC					058	RCLO
005	SPC				•	059	PRTX
000	P=2 PCIO					060	P=S RCIO
007	PRTX					062	X
009	RCL1					063	2
010	PRTX					064	Х
011	RCL2					065	PRTX
012	PRTX					066	ST08
013	RCL3					067	RCL2
014						000	
015	PRTX					070	
017	RCL5					071	P≠S
018	PRTX	·				072	RCL1
019	RCL2				•	073	Х
020	1					074	CHS
021			•			075	۲ ۲
022	KULU V					070	T P≐S
023	1/x					078	RCL6
025	RCL1					079	X
026	Х					080	PRTX
027	2					081	STOA
028	Х					082	1/X
029	STU0 PPTY					084	KULO V
031	RCL2					085	P≠S
032	X					086	STOB
033	PRT'X					087	PRTX
034	ST07					088	RCL1
035	RCL3					089	P⇔S
030						090	KULU V
038	RCI.4					092	2
039	÷					093	÷
040	RCL5					094	P≑S
041	÷					095	PRTX
042	_2	•				096	STOC
043	- T-					· 097	RGL2 D⇒C
044	אג סיזיסס					090	RCLO
045	ST09					100	X
047	P≠S					101	2
048	SPC					102	÷
049	SPC					103	RCLA
050	RCL1				•	104	X
051 052	PKTX					105	STOD
052						107	RCI.8
054	STOE					108	RCLO

APPENDIX A (Continued)

ŝ

¢

	C	PROC	RAM L	ISTINC Analy	Sais	H.P.	97-7
Step 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	Key Entry X 2 ÷ P=S RCL2 X RCLE + STOE PRTX RCLI X=0? GTOE RCLE P=S	PROC Span Lo	AM L	Analy	, vsis	n.r. Step 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	Key Entry PRTX STO8 RCL7 RCL8 - PRTX RCL9 + STO9 RCL8 STO7 SPC SPC RCL1 X<0?
$123 \\ 124 \\ 125 \\ 126 \\ 127 \\ 128 \\ 129 \\ 130 \\ 131 \\ 132 \\ 133 \\ 134 \\ 135 \\ 136 \\ 137 \\ 138 \\ 130 $	RCL1 2 X SPC PRTX P \$ S STO3 LBLE SPC RTN LBLC RCL3 5 7			•		178 179 180 181 182	GTO1 R/S LBL1 RTN R/S
$\begin{array}{c} 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ 162\end{array}$	3 ÷ STO4 PRTX 1 5 STO1 RCL1 RCL3 ÷ STO5 PRTX LBLD P≈S RCL8 RCL9 X ÷ P≈S RCL5 X STO6						

APPENDIX A (Continued)

	Sample run	for wi	ng N-27	(See	Table	VII).	
•	CLRG	PART	I				
	.313 5700		:				:
	.050 STOI						
	. 190 STO2		67770			107	c
	FIS INPLIT	. 286 .	5100			. (94	SIDA
	57. 149 STOP	. 350	000E			. 0.00	STOC
	326. 611 STOI DATA	0 205	6360 ***			.000	0102
	.667 STUC	0.200	***			0 102	65DE
	8160.000 5103	2.005	***			21 945	***
·	.006378 5104	5 797	***			4 977	***
	.84/ 3/03	10 001	***			4.413	171
•	CORD I	17.309	***			23.574	***
	CODA	392.574	***			7.105	***
	•	00200000				746.283	***
	· •	274	STOR			1 301200	1.1.1
	57 149 +++ WING SONU FT	450	STOL			. 178	STOR
	226 500 +++ 1/1/10 ADEA SO FT	• ****	6388			. 875	ST01
	SCO. SOLE ATTACK AND AREA, SAFT	8.274	***			1010	6SBB
	PICO BUE +++ GDOSS NOT	71 718	***			A 17A	***
-	BIOD HAT GROSS WILL THE	5 629	***			19.431	***
	BODT IN ALLING C.	5 373	***			4,859	***
		2 259	***			7 999	***
	4 573 ### CH TIP CHORD	16,656	***			25.003	***
	161 365 ### V FT/ FFO	452,863	***			6.942	***
	ICHIGO THE VS FITSEC					774.844	***
	SPANI STATION	.259	STOR				· .
	# 050 +++ 4/L/-	. 550	STO	•		. 135	STOØ
			GSBP	,		,925	ST01
	8.313 *** G/S (PEF 107)	0.259	***		•		GSBB
	35.775 *** To X-T	29.603	***			0.135	***
	6.742 *** Cu	5.601	***			15.438	***
	5.306 ktx Co	5.286	***			4.745	***
	1.429 ### 4 FT EROM	15.716	***			3.252	東右東
	19.266 *** AREA. SO FT	16.004	***			26.431	***
	102.226 *** (LO X AREA)	566.652	***			6.779	***
						796.089	***
	.307 STOU 5/S, AT	.238	STOØ				
	.150 STOI 4 (b/z)	.650	ST01			.073	STOØ
	65BB C	l	GSB5			. 975	STO1
	0.307 *** 6/5.	0.238	***			1.000	STOI
	35.089 *** Cox CM	27.203	末末年				GSBB
	6.514 ### 6 40	5.372	***			0.073	***
	5.387 *** Cen	5.063	***			8.344	***
	4.286 *** 49 FT	18.573	***		•	- 4.630	***
	18.613 *** (SAREA	15.351	***			1.802	***
	202.493 *** (Lly X (AREA)	644,383	***			27.868	***
	- 0		CTOG			- 0.010	***
	<u></u>	.216) 753 /	5708 5703			000.010	***
	CONPUTATION	. · JC 3	D'UI Nere			/ 4.948	3
	A TAC HILL FOR NEXT	6 012 (2000 2010			٦	J
	TT ATT AND AUTROARD	0.210 24 200	本示示 			\checkmark	
	SPAN STATION	2 ♥+ 000 1 € + A.A	्रम् र संस्थान				0
	5 302 444	262 77 4,744	****		IV	VING	C, AT
		21 431	•				L
	17 96/	14.699				$\alpha C =$	RADIAN
	299.166	7(4,929			1		

H.P. 97 COMPUTER LISTING CODE

30

APPENDIX A (Continued)

H.P. 97 COMPUTER LISTING CODE

PART II

÷

PREG	. 150	STDI .		.750.1	STOL
0 077 0		PIS		24 - 200	Pro-
0.975 1	32.683	5108		24.000	5100 P#6
0.050 2		P25	:	•	2SBU
4.948 3	451 775	6280	AT M	724 869	***
0.600 4	401.733	***		23, 895	111
0.009 5	3.021				
6.660 E INIDUT					
0.000 7	250	STOI	,	. 825	STÚ1
8.000 8 JATA		P25		.050	ST02
0.000 9	33, 832	STUR			₽₽S
4.630 A		P#S		21.945	ST08
1.802 P		GSBD			P#D
27.860 (445.194	***			GSED
6.616 D	16.541	***		288.774	***
309.010 E	•	•		36.095	***
1.000 1					
	.350	ST01	•		
PPC -		P\$\$.875	STOI
FFCG	32.689	ST08			P#S
57 1AG G		P₽S		19.431	STU8
726 500 1		GSBD			P25
0.667 2	430.154	***		ort coo	esen.
<u>5169,909</u> 3	15.041	***	· · ·	200:692	***
0.002 4				33.002	444
0.897 5	454	2701		۰ ۱	
6.856 C	.430	5101		925	STOL .
4.573 7	71. 718	ST08		1.20	PZS
8.344 8	011010	P2S		. 15.430	STOR
161.365 9		GSBD			P‡S
4.630 A	412.113	***		•	6S8D
1.862 B	18.041	***		203.043	***
<u> </u>			,	52.649	***
	.550	STOI	· .		
1.000 3		F₽S	,	.975	5T01
PIS	29.603	ST08		· · · · · · · · ·	PZS
PSP STOL & OF MIDPOINT.		PZS		8.344	\$108
, 100 STG2 A4, 70 1/2		GSBD		•	P75
P25	389.545	***		100 700	6580
35.775 STUS Con X CM	22.368	***	•	103.730	***
PZS O C				33.244	***
GSBC	. 650	STOI			
0.086 ***		P≓S		1.000	ST01
0.163 ***	27.283	ST08			P2S
470.762 ###		P=S		0.000	ST08
<u>-4/0.762 ###</u>		GSBD			P.=S
	357.964				6580
6SBD	31.582	•	•	6.000	***
470.762				` <i>193.79</i> 8	***
0.000			• :		

31 ·

BASIC program for SPAN LOADING ANALYSIS

file name="SPNLA"

LIST

10 11	POKE 41993, 32 PRINT "1071 SPAN LOADING ANALYSIS" DIM DELY (13), GDEL (13)
12	M=1
$14 \\ 16$	INPUT "FLAP SPAN =";FSP INPUT "SPFFD COMPUTATION=",Y
17	VFPS=139
18	WT=6000
20	AREA=327
22	RHO=0.002378
24	CL=0.8
20	LF X=1 CHEN 30 COTO 36
30	VFPS = SOR (WT / (AREA*RHO / 2*CL))
32	PRINT "SPEED=": VFPS
34	GOTO 40
36	CL=WT/ (RHO/2*VFPS'2*AREA)
38	PRINT "LIFT COEFFICIENT="; CL
40 42	INPUT "SPAN="; SPAN INDUT"TADED DATIO-11 TD
42 77	INPUT TAPER RATIO="; TR INPUT"ASPECT PATTO", ASPP
45	$CR = (2 \times AREA) / (Span \times (1 + TR))$
46	PRINT"CR="; CR
47	FOR $I = 1$ TO 13
49	READ DELY (I), GDEL (I)
50	NEXT I
52	DELY=DELY (M) CDEL=CDEL (M)
53	K=1-DELY
54	IF K=0 THEN 80
62	CT=TR*CR
64	CY=CR*(1-(DELY*(1-TR)))
65	YCL=2*SPAN*GDEL/CY
67	IF DELY > 0.75 THEN 69
68	GOTO 75
69	YINC=0.05
75	SMCL=SMCL+YCL*CY*YINC*SPAN
76	M=M+1
77	GOTO 51
0U 82	κυμ≂δΜυμ/ ΑκμΑ Μιμ π−σι / ρσι
84	SLC=RCL/57 3
90	M=1

APPENDIX B (Continued)

•	• •		· · ·	
•••		Page	two	

Ç

91	DELY=DELY (M)
92	GDEL=GDEL (M)
102	K=1-DELY
104	IF $K=0$ THEN 160
106	CY = CR*(1 - DELY*(1 - TR)))
108	YCL=2*SPAN*GDEL/CY
110	IF DELY > 0.75 THEN 115
112	YINC=0.1
113	GOTO 120
115	YINC=0.05
120	GAM=YCL*CY*VFPS/2
125	GAM=GAM*MULT
126	SGAM=SGAM+GAM*YINC*SPAN/2
130	PRINT"SPAN STATION="; DELY
132	PRINT"CY=";CY
134	PRINT"CLY="; YCL
140	PRINT''GAMMA=''; CAM
142	PRINT" "
143	M=M+1
144	GOTO 91
160	PRINT" "
162	PRINT"CL/RADIAN="; RCL
164	PRINT"LIFT CURVE SLOPE=";SLC
165	PRINT"CT=";CT
166	AVGM=SCAM/(Span/2)
170	DATA 0.05,0.379,0.15,0.375,0.25,0.365
171	DATA 0.35,0.353,0.45,0.337,0.55,0.319
172	DATA 0.65,0.292,0.75,0.263,0.825,0.299
173	DATA 0.875,0.198,0.925,0.161,0.975,0.09, 1, 0
176	PRINT"AVG GAMMA=";AVGM
200	STOP

APPENDIX B (Continued)

40 te h ·•••• I tr) ur) 1000 \mathbf{H} ~ 1 *0*0 цj ЪD 1D 60 লা সা 64 P ା 1 ... nde. 115 10 10 **7:**--**i** 11. UD. 00 ωp ò 1. Ch. 1.64 6354 100 LI.I ା ·**** ហហ miù ા છે ரைவ 40.00 201 Fee 語道法 б., in. 1Ô. . in Ci ST OF OF ∛÷ ≂4 00__\ 1、1011本 1. 10 OHONS ₩ 00 ~+ 30 a a 60 5.5 A 1 \bigcirc i -CD 11 1 10 - 4 HOOD OF 11 0111 03 11 16 25 46 化的场面 11 19-12 12-12 641 ÷ ខេត្តហំ ឌេ៣០ក្ 22 H M (S) ស៊ីប្រូស៊ ២២ $\approx 120 \times 100$ 2040 23 H CL CH CD CD CH - 1 \mathbb{C}^{1} 1~10 1 $O \cap N$ C + 00 : σώi MOT MUDIO ÃÓMN មើលីភាល់ Pres 22 2004 1201 100 Par wel 101 HODOD HI CHIP LO ରାନ୍ତି ଭୁକ୍ତ Cd (C) (M $H = O \otimes D$ H-MOO -0000ലയയ്ത 1-00 61 7 - CO (7) 1-- mr. 10 40 N J 144 0000 CC HOND a monort TOMM # mr. m CC - CO () CC 00 P- +4 জি পাশ $\odot \neq \dashv$ P-01 . ---- [·--- . -10F 77 |---- f* 1 1---- - e--- 1 . r - to ីសាំព in Ling I in. ίn. ίġγ. ю. Į 10 н -i-1.11 an an ar x lead that стерия Стери . 60 CT: 1 - - i - i - 00 10 ÷ ti t <u>د</u>۲. BRAN BRAN BRAN BRAN **1**322 **1**322 $\alpha = \infty \vdash \infty$ 77 111 22. . 65 ៍៤៙ំ॥០៧ំយី · . . — > in a 1 77 1-4 **~ 5** <u>ت</u> ت ب 🕶 õ ا....ا ωŤ Č. ٥. S SPAN LOADING ANALYSI 1. Ē 6.4 1 1 -ÌI. 10 ιÓ Ċr Z H^C1 ----10 ž U)) 100 1.1 10 10 цю. ····· **~**† ·••• % SPNLA Th 00 Ċ4 111 $\sigma_{\rm B}$ VD OD **C**D mr. r. -1 *** 4**5 ထက် നത 년 00.500 ----. CONTROL OF . . . Gue en augu 10 00 -4 on of the 11/1 1 1 en C ŀ.... 1.11 H HOLD UP 11 (S h= 0) , et c 1010 14 64 64 ZOMO CON 2000 - E Ö _____ (C) 989 ៍ ្ល ត្វា ហ HID COL Fred 12 12 12 - 10 O O LISTING H- 00.01 - 000NH H H RE त्वद्य को म 4 CC CO MAL (CEM MYO in moi w ñ ÷ i--- UD . -- CD a C 1 닅 in ne in. T. 60 (H ហេហាហ 1 r., CC. C 0 1----1 SPAN CY= GRMMP E ធិតិតំពូទី ¢0 OUTPUT ທິພິພິພິ BASIC

34

٩e.

APPENDIX B (Continued)

BASIC program for SPAN LOADING ANALYSIS

file name="SPNLB"

This version of the span loading analysis program is the same as SPNLA except for the following statements:

17 INPUT "VFPS="; VFPS INPUT "WEIGHT="; WT. INPUT "WING AREA ="; AREA INPUT "DENSITY="; RHO 18

• -

20

22

INPUT "LIFT COEFF="; CL 24

All succeeding statements are the same as SPNLA.

APPENDIX B (Continued) COMPUTER OUTPUT LISTING for BASIC Span Loading Analysis

file name="SPNLB"

SPAN STATION= .45) CY= 6.52500496 CLY= 5.28002419 GAMMA= 396:325624 SPAN STATION= .55 CY= 6.2694234 . CLY= 5.20175555 GAMMA= 375.156896 e ser an o SPAN STATION= .65 CY= 6.01384184 CLY= 4.96383923 GRMMA= 343.403804 1071 SPAN LOADING AN SPAN STATION= .75 CY= 5.75826027 CLY= 4.66929502 GRMMA= 309.298632 SPAN STATION= .817 CY= 5.5665741 CLY= 4.20566179 COMMON 269 313255 GAMMA= 269.313259 1 SPAN STATION= .875 _______5.43878332 CLY= 5.13372568 GAMMA= 445.719321 SPAN STATION= .45 CY= 7.29174965 CLY= 3.09911036 GAMMA= 189.3425 CLY= 3.72177651 GRMMA= 232.856004 - BRINING -SPAN STATION= 37 CY= 5.18320176 CLY= 1.77513445 GRMMA= 105 04727 GAMMA= 105.843638 CL/RADIAN= 4.8293694 LIFT CURVE SLOPE= .0842821886 CT= 5.11930637 AVG GAMMA= 355.399417 BREAK IN 299

FLAP SPAN=? 1 SPEED_Computation=? 4 VFPS=∛ 139 WEIGHT=? 6000 WING AREA= 227 DENSITY=? .002378 LIFT COEFF=? .8 SPEED= 138.888353 'SPAN=? 51.116 TAPER RATIO=?..667 ASPECT RATID=? 8 CR= 7.67512199 SPAN STATION= .05 CY= 7:54733121 CLY= 5.13372568 SPAN_STATION= . 25 CY= 7.03616809 - CLY= 5.30326729 GAMMAS 429, 254755 SPAN STATION= .35 CY= 5.78058653 , CLY= 5.32223811 CPMMARE 415.14227

RUN

GRMMS= 415. 14227

Ç

Spanwise load distribution factor, $\frac{G}{\delta_1}$, per radian.

Aspect ratio = 6.0

FIGURE 1.

Spanwise load distribution factor, $\frac{G}{\delta_1}$, per radian.

Aspect ratio = 10.0

FIGURE 2

.

Ł

.

÷

¢

.

ŧ

)

^{LE} FT² / SEC

End of Document